Introduction
In 1828, Carl Friedrich Gauss proved his Theorema Egregium (remarkable theorem in Latin), establishing an important property of surfaces. Informally, the theorem says that the curvature of a surface can be determined entirely by measuring distances along paths on the surface. That is, curvature does not depend on how the surface might be embedded in 3-dimensional space. See differential geometry of surfaces. Bernhard Riemann extended Gauss's theory to higher dimensional spaces called manifolds in a way that also allows distances and angles to be measured and the notion of curvature to be defined, again in a way that was intrinsic to the manifold and not dependent upon its embedding in higher-dimensional spaces. Albert Einstein used the theory of Riemannian manifolds to develop his General Theory of Relativity. In particular, his equations for gravitation are restrictions on the curvature of space.
Read more about this topic: Riemannian Manifold
Famous quotes containing the word introduction:
“We used chamber-pots a good deal.... My mother ... loved to repeat: When did the queen reign over China? This whimsical and harmless scatological pun was my first introduction to the wonderful world of verbal transformations, and also a first perception that a joke need not be funny to give pleasure.”
—Angela Carter (19401992)
“My objection to Liberalism is thisthat it is the introduction into the practical business of life of the highest kindnamely, politicsof philosophical ideas instead of political principles.”
—Benjamin Disraeli (18041881)
“Do you suppose I could buy back my introduction to you?”
—S.J. Perelman, U.S. screenwriter, Arthur Sheekman, Will Johnstone, and Norman Z. McLeod. Groucho Marx, Monkey Business, a wisecrack made to his fellow stowaway Chico Marx (1931)