Riemann Curvature Tensor

Riemann Curvature Tensor

General relativity
Introduction
Mathematical formulation
Resources
Fundamental concepts Special relativity
Equivalence principle
World line · Riemannian geometry
Phenomena Kepler problem · Lenses · Waves
Frame-dragging · Geodetic effect
Event horizon · Singularity
Black hole
Equations Linearized gravity
Post-Newtonian formalism
Einstein field equations
Geodesic equation
Friedmann equations
ADM formalism
BSSN formalism
Advanced theories Kaluza–Klein
Quantum gravity
Solutions Schwarzschild
Reissner–Nordström · Gödel
Kerr · Kerr–Newman
Kasner · Taub-NUT · Milne · Robertson–Walker
pp-wave · van Stockum dust
Scientists Einstein · Lorentz · Hilbert · Poincare · Schwarzschild · Sitter · Reissner · Nordström · Weyl · Eddington · Friedman · Milne · Zwicky · Lemaître · Gödel · Wheeler · Robertson · Bardeen · Walker · Kerr · Chandrasekhar · Ehlers · Penrose · Hawking · Taylor · Hulse · Stockum · Taub · Newman · Thorne
others
Spacetime Spacetime
Minkowski spacetime
Spacetime diagrams
Spacetime in General relativity

In the mathematical field of differential geometry, the Riemann curvature tensor, or Riemann–Christoffel tensor after Bernhard Riemann and Elwin Bruno Christoffel, is the most standard way to express curvature of Riemannian manifolds. It associates a tensor to each point of a Riemannian manifold (i.e., it is a tensor field), that measures the extent to which the metric tensor is not locally isometric to a Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection. It is a central mathematical tool in the theory of general relativity, the modern theory of gravity, and the curvature of spacetime is in principle observable via the geodesic deviation equation. The curvature tensor represents the tidal force experienced by a rigid body moving along a geodesic in a sense made precise by the Jacobi equation.

The curvature tensor is given in terms of the Levi-Civita connection by the following formula:

where is the Lie bracket of vector fields. For each pair of tangent vectors u, v, R(u,v) is a linear transformation of the tangent space of the manifold. It is linear in u and v, and so defines a tensor. Occasionally, the curvature tensor is defined with the opposite sign. If and are coordinate vector fields then and therefore the formula simplifies to

The curvature tensor measures noncommutativity of the covariant derivative, and as such is the integrability obstruction for the existence of an isometry with Euclidean space (called, in this context, flat space). The linear transformation is also called the curvature transformation or endomorphism.

Read more about Riemann Curvature Tensor:  Geometrical Meaning, Coordinate Expression, Symmetries and Identities, Special Cases