Introduction To General Relativity
General relativity is a theory of gravitation that was developed by Albert Einstein between 1907 and 1915. According to general relativity, the observed gravitational attraction between masses results from their warping of space and time.
By the beginning of the 20th century, Newton's law of universal gravitation had been accepted for more than two hundred years as a valid description of the gravitational force between masses. In Newton's model, gravity is the result of an attractive force between massive objects. Although even Newton was troubled by the unknown nature of that force, the basic framework was extremely successful at describing motion.
Experiments and observations show that Einstein's description of gravitation accounts for several effects that are unexplained by Newton's law, such as minute anomalies in the orbits of Mercury and other planets. General relativity also predicts novel effects of gravity, such as gravitational waves, gravitational lensing and an effect of gravity on time known as gravitational time dilation. Many of these predictions have been confirmed by experiment, while others are the subject of ongoing research. For example, although there is indirect evidence for gravitational waves, direct evidence of their existence is still being sought by several teams of scientists in experiments such as the LIGO and GEO 600 projects.
General relativity has developed into an essential tool in modern astrophysics. It provides the foundation for the current understanding of black holes, regions of space where gravitational attraction is so strong that not even light can escape. Their strong gravity is thought to be responsible for the intense radiation emitted by certain types of astronomical objects (such as active galactic nuclei or microquasars). General relativity is also part of the framework of the standard Big Bang model of cosmology.
Although general relativity is not the only relativistic theory of gravity, it is the simplest such theory that is consistent with the experimental data. Nevertheless, a number of open questions remain, the most fundamental of which is how general relativity can be reconciled with the laws of quantum physics to produce a complete and self-consistent theory of quantum gravity.
Read more about Introduction To General Relativity: From Special To General Relativity, Geometry and Gravitation, Experimental Tests, Astrophysical Applications, Modern Research: General Relativity and Beyond
Famous quotes containing the words introduction to, introduction, general and/or relativity:
“Do you suppose I could buy back my introduction to you?”
—S.J. Perelman, U.S. screenwriter, Arthur Sheekman, Will Johnstone, and Norman Z. McLeod. Groucho Marx, Monkey Business, a wisecrack made to his fellow stowaway Chico Marx (1931)
“For better or worse, stepparenting is self-conscious parenting. Youre damned if you do, and damned if you dont.”
—Anonymous Parent. Making It as a Stepparent, by Claire Berman, introduction (1980, repr. 1986)
“I have never looked at foreign countries or gone there but with the purpose of getting to know the general human qualities that are spread all over the earth in very different forms, and then to find these qualities again in my own country and to recognize and to further them.”
—Johann Wolfgang Von Goethe (17491832)
“By an application of the theory of relativity to the taste of readers, to-day in Germany I am called a German man of science, and in England I am represented as a Swiss Jew. If I come to be regarded as a bĂȘte noire the descriptions will be reversed, and I shall become a Swiss Jew for the Germans and a German man of science for the English!”
—Albert Einstein (18791955)