Definition of Ridges and Valleys in N Dimensions
In its broadest sense, the notion of ridge generalizes the idea of a local maximum of a real-valued function. A point in the domain of a function is a local maximum of the function if there is a distance with the property that if is within units of, then . It is well known that critical points, of which local maxima are just one type, are isolated points in a function's domain in all but the most unusual situations (i.e., the nongeneric cases).
Consider relaxing the condition that for in an entire neighborhood of slightly to require only that this hold on an dimensional subset. Presumably this relaxation allows the set of points which satisfy the criteria, which we will call the ridge, to have a single degree of freedom, at least in the generic case. This means that the set of ridge points will form a 1-dimensional locus, or a ridge curve. Notice that the above can be modified to generalize the idea to local minima and result in what might call 1-dimensional valley curves.
This following ridge definition follows the book by Eberly and can be seen as a generalization of some of the abovementioned ridge definitions. Let be open an open set, and be smooth. Let . Let be the gradient of at, and let be the Hessian matrix of at . Let be the ordered eigenvalues of and let be a unit eigenvector in the eigenspace for . (For this, one should assume that all the eigenvalues are distinct.)
The point is a point on the 1-dimensional ridge of if the following conditions hold:
- , and
- for .
This makes precise the concept that restricted to this particular -dimensional subspace has a local maxima at .
This definition naturally generalizes to the k-dimensional ridge as follows: the point is a point on the k-dimensional ridge of if the following conditions hold:
- , and
- for .
In many ways, these definitions naturally generalize that of a local maximum of a function. Properties of maximal convexity ridges are put on a solid mathematical footing by Damon and Miller. Their properties in one-parameter families was established by Keller.
Read more about this topic: Ridge Detection
Famous quotes containing the words definition of, definition, valleys and/or dimensions:
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)
“The West is preparing to add its fables to those of the East. The valleys of the Ganges, the Nile, and the Rhine having yielded their crop, it remains to be seen what the valleys of the Amazon, the Plate, the Orinoco, the St. Lawrence, and the Mississippi will produce. Perchance, when, in the course of ages, American liberty has become a fiction of the past,as it is to some extent a fiction of the present,the poets of the world will be inspired by American mythology.”
—Henry David Thoreau (18171862)
“It seems to me that we do not know nearly enough about ourselves; that we do not often enough wonder if our lives, or some events and times in our lives, may not be analogues or metaphors or echoes of evolvements and happenings going on in other people?or animals?even forests or oceans or rocks?in this world of ours or, even, in worlds or dimensions elsewhere.”
—Doris Lessing (b. 1919)