Description
The original statement of the paradox, due to Richard (1905), has a relation to Cantor's diagonal argument on the uncountability of the set of real numbers.
The paradox begins with the observation that certain expressions in English unambiguously define real numbers, while other expressions in English do not. For example, "The real number whose integer part is 17 and whose nth decimal place is 0 if n is even and 1 if n is odd" defines the real number 17.1010101..., while the phrase "London is in England" does not define a real number.
Thus there is an infinite list of English phrases (where each phrase is of finite length, but lengths vary in the list) that unambiguously define real numbers; arrange this list by length and then dictionary order, so that the ordering is canonical. This yields an infinite list of the corresponding real numbers: r1, r2, ... . Now define a new real number r as follows. The integer part of r is 0, the nth decimal place of r is 1 if the nth decimal place of rn is not 1, and the nth decimal place of r is 2 if the nth decimal place of rn is 1.
The preceding two paragraphs are an expression in English which unambiguously defines a real number r. Thus r must be one of the numbers rn. However, r was constructed so that it cannot equal any of the rn. This is the paradoxical contradiction.
Read more about this topic: Richard's Paradox
Famous quotes containing the word description:
“To give an accurate description of what has never occurred is not merely the proper occupation of the historian, but the inalienable privilege of any man of parts and culture.”
—Oscar Wilde (18541900)
“The Sage of Toronto ... spent several decades marveling at the numerous freedoms created by a global village instantly and effortlessly accessible to all. Villages, unlike towns, have always been ruled by conformism, isolation, petty surveillance, boredom and repetitive malicious gossip about the same families. Which is a precise enough description of the global spectacles present vulgarity.”
—Guy Debord (b. 1931)
“An intentional object is given by a word or a phrase which gives a description under which.”
—Gertrude Elizabeth Margaret Anscombe (b. 1919)