Physiologic Function
Rev-erbα regulates gene transcription by directly binding to target response elements (RevREs), comprises an A/T-rich flank followed by AGGTCA. Rev-erbα mediates repression by recruiting the corepressor N-CoR, which then activates the histone deacetylase (HDAC) 3. A number of target genes has been identified for Rev-erbα, including the lipoproteins ApoA1 and ApoCIII, hydratase dehydrogenase, the circadian factor BMAL, and the anti-fibrinolytic factor PAI-1. Many of these genes are coordinately regulated by Rev-erbα and the RAR-related orphan receptor RORα, which share the same response elements but exert opposite effects on gene transcription. Crosstalk between Rev-erbα and RORα likely acts to fine-tune their target physiologic networks, such as circadian rhythms, metabolic homeostasis, and inflammation.
Rev-erbα mRNA is induced during adipogenesis and is highly expressed in adipose tissue. One study reported that overexpression of Rev-erbα may enhance adipogenesis in cultured mouse adipocytes, but the mechanism of this effect remains to be elucidated. More recently, a study showed that the deletion of Rev-erbα in mice alters glucose and lipid metabolism and leads to obesity.
Rev-erbα expression is also regulated at the post-translational level: it is phosphorylated on the amino terminus by glycogen synthase kinase (GSK 3β), which contributes to its protein stability. It has been shown that lithium, which inhibits GSK3β, can de-stabilize Rev-erbα protein and affect its function in the circadian clock. This may partly explain lithium’s therapeutic effect on circadian diseases such as bipolar disorder.
Read more about this topic: Rev-Erb A Alpha
Famous quotes containing the word function:
“Nobody seriously questions the principle that it is the function of mass culture to maintain public morale, and certainly nobody in the mass audience objects to having his morale maintained.”
—Robert Warshow (19171955)