Restriction Enzyme - Recognition Site

Recognition Site

Restriction enzymes recognize a specific sequence of nucleotides and produce a double-stranded cut in the DNA. While recognition sequences vary between 4 and 8 nucleotides, many of them are palindromic, which correspond to nitrogenous base sequences that read the same backwards and forwards. In theory, there are two types of palindromic sequences that can be possible in DNA. The mirror-like palindrome is similar to those found in ordinary text, in which a sequence reads the same forward and backwards on a single strand of DNA strand, as in GTAATG. The inverted repeat palindrome is also a sequence that reads the same forward and backwards, but the forward and backward sequences are found in complementary DNA strands (i.e., of double-stranded DNA), as in GTATAC (GTATAC being complementary to CATATG). Inverted repeat palindromes are more common and have greater biological importance than mirror-like palindromes.

EcoRI digestion produces "sticky" ends,

whereas SmaI restriction enzyme cleavage produces "blunt" ends:

Recognition sequences in DNA differ for each restriction enzyme, producing differences in the length, sequence and strand orientation (5' end or the 3' end) of a sticky-end "overhang" of an enzyme restriction.

Different restriction enzymes that recognize the same sequence are known as neoschizomers. These often cleave in different locales of the sequence. Different enzymes that recognize and cleave in the same location are known as isoschizomers.

Read more about this topic:  Restriction Enzyme

Famous quotes containing the words recognition and/or site:

    Democracy and equality try to deny ... the mystic recognition of difference and innate priority, the joy of obedience and the sacred responsibility of authority.
    —D.H. (David Herbert)

    It’s given new meaning to me of the scientific term black hole.
    Don Logan, U.S. businessman, president and chief executive of Time Inc. His response when asked how much his company had spent in the last year to develop Pathfinder, Time Inc.’S site on the World Wide Web. Quoted in New York Times, p. D7 (November 13, 1995)