Representable Functor - Definition

Definition

Let C be a locally small category and let Set be the category of sets. For each object A of C let Hom(A,–) be the hom functor which maps objects X to the set Hom(A,X).

A functor F : CSet is said to be representable if it is naturally isomorphic to Hom(A,–) for some object A of C. A representation of F is a pair (A, Φ) where

Φ : Hom(A,–) → F

is a natural isomorphism.

A contravariant functor G from C to Set is the same thing as a functor G : Cop → Set and is therefore representable just when it is naturally isomorphic to the contravariant hom-functor Hom(–,A) for some object A of C.

Read more about this topic:  Representable Functor

Famous quotes containing the word definition:

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)