Renders - Radiosity

Radiosity is a method which attempts to simulate the way in which directly illuminated surfaces act as indirect light sources that illuminate other surfaces. This produces more realistic shading and seems to better capture the 'ambience' of an indoor scene. A classic example is the way that shadows 'hug' the corners of rooms.

The optical basis of the simulation is that some diffused light from a given point on a given surface is reflected in a large spectrum of directions and illuminates the area around it.

The simulation technique may vary in complexity. Many renderings have a very rough estimate of radiosity, simply illuminating an entire scene very slightly with a factor known as ambiance. However, when advanced radiosity estimation is coupled with a high quality ray tracing algorithim, images may exhibit convincing realism, particularly for indoor scenes.

In advanced radiosity simulation, recursive, finite-element algorithms 'bounce' light back and forth between surfaces in the model, until some recursion limit is reached. The colouring of one surface in this way influences the colouring of a neighbouring surface, and vice versa. The resulting values of illumination throughout the model (sometimes including for empty spaces) are stored and used as additional inputs when performing calculations in a ray-casting or ray-tracing model.

Due to the iterative/recursive nature of the technique, complex objects are particularly slow to emulate. Prior to the standardization of rapid radiosity calculation, some graphic artists used a technique referred to loosely as false radiosity by darkening areas of texture maps corresponding to corners, joints and recesses, and applying them via self-illumination or diffuse mapping for scanline rendering. Even now, advanced radiosity calculations may be reserved for calculating the ambiance of the room, from the light reflecting off walls, floor and ceiling, without examining the contribution that complex objects make to the radiosity—or complex objects may be replaced in the radiosity calculation with simpler objects of similar size and texture.

Radiosity calculations are viewpoint independent which increases the computations involved, but makes them useful for all viewpoints. If there is little rearrangement of radiosity objects in the scene, the same radiosity data may be reused for a number of frames, making radiosity an effective way to improve on the flatness of ray casting, without seriously impacting the overall rendering time-per-frame.

Because of this, radiosity is a prime component of leading real-time rendering methods, and has been used from beginning-to-end to create a large number of well-known recent feature-length animated 3D-cartoon films.

Read more about this topic:  Renders