The Remainder For Natural Numbers
If a and d are natural numbers, with d non-zero, it can be proven that there exist unique integers q and r, such that a = qd + r and 0 ≤ r < d. The number q is called the quotient, while r is called the remainder. See Euclidean division for a proof of this result and division algorithm for algorithms describing how to calculate the remainder.
Read more about this topic: Remainder
Famous quotes containing the words remainder, natural and/or numbers:
“Most personal correspondence of today consists of letters the first half of which are given over to an indexed statement of why the writer hasnt written before, followed by one paragraph of small talk, with the remainder devoted to reasons why it is imperative that the letter be brought to a close.”
—Robert Benchley (18891945)
“The image cannot be dispossessed of a primordial freshness, which idea can never claim. An idea is derivative and tamed. The image is in the natural or wild state, and it has to be discovered there, not put there, obeying its own law and none of ours. We think we can lay hold of image and take it captive, but the docile captive is not the real image but only the idea, which is the image with its character beaten out of it.”
—John Crowe Ransom (18881974)
“Individually, museums are fine institutions, dedicated to the high values of preservation, education and truth; collectively, their growth in numbers points to the imaginative death of this country.”
—Robert Hewison (b. 1943)