Remainder - The Remainder For Natural Numbers

The Remainder For Natural Numbers

If a and d are natural numbers, with d non-zero, it can be proven that there exist unique integers q and r, such that a = qd + r and 0 ≤ r < d. The number q is called the quotient, while r is called the remainder. See Euclidean division for a proof of this result and division algorithm for algorithms describing how to calculate the remainder.

Read more about this topic:  Remainder

Famous quotes containing the words remainder, natural and/or numbers:

    There are only three kinds of people: those who serve God, having found him; others who are occupied in seeking him, not having found him; while the remainder live without seeking him and without having found him. The first are reasonable and happy; the last are foolish and unhappy; those between are unhappy and unreasonable.
    Blaise Pascal (1623–1662)

    We have perhaps a natural fear of ends. We would rather be always on the way than arrive. Given the means, we hang on to them and often forget the ends.
    Eric Hoffer (1902–1983)

    Our religion vulgarly stands on numbers of believers. Whenever the appeal is made—no matter how indirectly—to numbers, proclamation is then and there made, that religion is not. He that finds God a sweet, enveloping presence, who shall dare to come in?
    Ralph Waldo Emerson (1803–1882)