Remainder - The Remainder For Natural Numbers

The Remainder For Natural Numbers

If a and d are natural numbers, with d non-zero, it can be proven that there exist unique integers q and r, such that a = qd + r and 0 ≤ r < d. The number q is called the quotient, while r is called the remainder. See Euclidean division for a proof of this result and division algorithm for algorithms describing how to calculate the remainder.

Read more about this topic:  Remainder

Famous quotes containing the words remainder, natural and/or numbers:

    “What have I gained?”
    “Experience,” said Holmes, laughing. “Indirectly it may be of value, you know; you have only to put it into words to gain the reputation of being excellent company for the remainder of your existence.”
    Sir Arthur Conan Doyle (1859–1930)

    The natural flights of the human mind are not from pleasure to pleasure, but from hope to hope.
    Samuel Johnson (1709–1784)

    The only phenomenon with which writing has always been concomitant is the creation of cities and empires, that is the integration of large numbers of individuals into a political system, and their grading into castes or classes.... It seems to have favored the exploitation of human beings rather than their enlightenment.
    Claude Lévi-Strauss (b. 1908)