Relativistic Heavy Ion Collider - Critics of High Energy Experiments

Critics of High Energy Experiments

See also: Safety of particle collisions at the Large Hadron Collider

Before RHIC started operation, critics postulated that the extremely high energy could produce catastrophic scenarios, such as creating a black hole, a transition into a different quantum mechanical vacuum (see false vacuum), or the creation of strange matter that is more stable than ordinary matter. These hypotheses are complex, but many predict that the Earth would be destroyed in a time frame from seconds to millennia, depending on the theory considered. However, the fact that objects of the Solar System (e.g., the Moon) have been bombarded with cosmic particles of significantly higher energies than that of RHIC and other man made colliders for billions of years, without any harm to the Solar System, were among the most striking arguments that these hypotheses were unfounded.

Wikinews has related news: Fireball generated in U.S. laboratory resembles black hole

The other main controversial issue was a demand by critics for physicists to reasonably exclude the probability for such a catastrophic scenario. Physicists are unable to demonstrate experimental and astrophysical constraints of zero probability of catastrophic events, nor that tomorrow Earth will be struck with a "doomsday" cosmic ray (they can only calculate an upper limit for the likelihood). The result would be the same destructive scenarios described above, although obviously not caused by humans. According to this argument of upper limits, RHIC would still modify the chance for the Earth's survival by an infinitesimal amount.

Concerns were raised in connection with the RHIC particle accelerator, both in the media and in the popular science media. The risk of a doomsday scenario was indicated by Martin Rees, with respect to the RHIC, as being at least a 1 in 50,000,000 chance. With regards to the production of strangelets, Frank Close, professor of physics at the University of Oxford, indicates that "the chance of this happening is like you winning the major prize on the lottery 3 weeks in succession; the problem is that people believe it is possible to win the lottery 3 weeks in succession." After detailed studies, scientists reached such conclusions as "beyond reasonable doubt, heavy-ion experiments at RHIC will not endanger our planet" and that there is "powerful empirical evidence against the possibility of dangerous strangelet production."

The debate started in 1999 with an exchange of letters in Scientific American between Walter L. Wagner, and F. Wilczek, Institute for Advanced Study, in response to a previous article by M. Mukerjee. The media attention unfolded with an article in U.K. Sunday Times of July 18, 1999 by J. Leake, closely followed by articles in the U.S. media. The controversy mostly ended with the report of a committee convened by the director of Brookhaven National Laboratory, J. H. Marburger, ostensibly ruling out the catastrophic scenarios depicted. However, the report left open the possibility that relativistic cosmic ray impact products might behave differently while transiting earth compared to "at rest" RHIC products; and the possibility that the qualitative difference between high-E proton collisions with earth or the moon might be different than gold on gold collisions at the RHIC. Wagner tried subsequently to stop full energy collision at RHIC by filing Federal lawsuits in San Francisco and New York, but without success. The New York suit was dismissed on the technicality that the San Francisco suit was the preferred forum. The San Francisco suit was dismissed, but with leave to refile if additional information was developed and presented to the court.

On March 17, 2005, the BBC published an article implying that researcher Horaţiu Năstase believes black holes have been created at RHIC. However, the original papers of H. Năstase and the New Scientist article cited by the BBC state that the correspondence of the hot dense QCD matter created in RHIC to a black hole is only in the sense of a correspondence of QCD scattering in Minkowski space and scattering in the AdS5 × X5 space in AdS/CFT; in other words, it is similar mathematically. Therefore, RHIC collisions might be described by mathematics relevant to theories of quantum gravity within AdS/CFT, but the described physical phenomena are not the same.

Read more about this topic:  Relativistic Heavy Ion Collider

Famous quotes containing the words critics of, critics, high, energy and/or experiments:

    My idea is always to reach my generation. The wise writer ... writes for the youth of his own generation, the critics of the next, and the schoolmasters of ever afterward.
    F. Scott Fitzgerald (1896–1940)

    I wish glib and indiscriminate critics of industrialists had some conception of the problems that have to be met by factory management.... General condemnation of employers is a favorite indoor sport of the uninformed intelligentsia who assume the role of lance- bearers for labor.
    Mary Barnett Gilson (1877–?)

    I’ll walk, but not in old heroic traces,
    And not in paths of high morality,
    And not among the half-distinguished faces,
    The clouded forms of long-past history.
    Emily Brontë (1818–1848)

    Perhaps catastrophe is the natural human environment, and even though we spend a good deal of energy trying to get away from it, we are programmed for survival amid catastrophe.
    Germaine Greer (b. 1939)

    Science is a dynamic undertaking directed to lowering the degree of the empiricism involved in solving problems; or, if you prefer, science is a process of fabricating a web of interconnected concepts and conceptual schemes arising from experiments and observations and fruitful of further experiments and observations.
    James Conant (1893–1978)