Regulation of gene expression includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA), and is informally termed gene regulation. Sophisticated programs of gene expression are widely used in biology, for example to trigger developmental pathways, respond to environmental stimuli, or adapt to new food sources. Virtually any step of gene expression can be modulated, from transcriptional initiation, to RNA processing, and to the post-translational modification of a protein.
Gene regulation is essential for viruses, prokaryotes and eukaryotes as it increases the versatility and adaptability of an organism by allowing the cell to express protein when needed. Although as early as 1951 Barbara McClintock showed interaction between two genetic loci, Activator (Ac) and Dissociator (Ds), in the color formation of maize seeds, the first discovery of a gene regulation system is widely considered to be the identification in 1961 of the lac operon, discovered by Jacques Monod, in which some enzymes involved in lactose metabolism are expressed by the genome of E. coli only in the presence of lactose and absence of glucose.
Furthermore, in multicellular organisms, gene regulation drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types that possess different gene expression profiles, and hence produce different proteins/have different ultrastructures that suit them to their functions (though they all possess the genotype, which follows the same genome sequence).
Read more about Regulation Of Gene Expression: Regulated Stages of Gene Expression, Modification of DNA, Regulation of Transcription, Post-transcriptional Regulation, Regulation of Translation, Examples of Gene Regulation, Methods
Famous quotes containing the words regulation of, regulation and/or expression:
“Nothing can be more real, or concern us more, than our own sentiments of pleasure and uneasiness; and if these be favourable to virtue and unfavourable to vice, no more can be requisite to the regulation of our conduct and behavior.”
—David Hume (17111776)
“Nothing can be more real, or concern us more, than our own sentiments of pleasure and uneasiness; and if these be favourable to virtue and unfavourable to vice, no more can be requisite to the regulation of our conduct and behavior.”
—David Hume (17111776)
“Realism should only be the means of expression of religious genius ... or, at the other extreme, the artistic expressions of monkeys which are quite satisfied with mere imitation. In fact, art is never realistic though sometimes it is tempted to be. To be really realistic a description would have to be endless.”
—Albert Camus (19131960)