Babylonian Mathematics
In the Babylonian sexagesimal notation, the reciprocal of a regular number has a finite representation, thus being easy to divide by. Specifically, if n divides 60k, then the sexagesimal representation of 1/n is just that for 60k/n, shifted by some number of places.
For instance, suppose we wish to divide by the regular number 54 = 2133. 54 is a divisor of 603, and 603/54 = 4000, so dividing by 54 in sexagesimal can be accomplished by multiplying by 4000 and shifting three places. In sexagesimal 4000 = 1×3600 + 6×60 + 40×1, or (as listed by Joyce) 1:6:40. Thus, 1/54, in sexagesimal, is 1/60 + 6/602 + 40/603, also denoted 1:6:40 as Babylonian notational conventions did not specify the power of the starting digit. Conversely 1/4000 = 54/603, so division by 1:6:40 = 4000 can be accomplished by instead multiplying by 54 and shifting three sexagesimal places.
The Babylonians used tables of reciprocals of regular numbers, some of which still survive (Sachs, 1947). These tables existed relatively unchanged throughout Babylonian times.
Although the primary reason for preferring regular numbers to other numbers involves the finiteness of their reciprocals, some Babylonian calculations other than reciprocals also involved regular numbers. For instance, tables of regular squares have been found and the broken cuneiform tablet Plimpton 322 has been interpreted by Neugebauer as listing Pythagorean triples generated by p, q both regular and less than 60.
Read more about this topic: Regular Number
Famous quotes containing the words babylonian and/or mathematics:
“Alls vast that vastness means. Nay, I affirm
Nature is whole in her least things exprest,
Nor know we with what scope God builds the worm.
Our towns are copied fragments from our breast;
And all mans Babylons strive but to impart
The grandeurs of his Babylonian heart.”
—Francis Thompson (18591907)
“The three main medieval points of view regarding universals are designated by historians as realism, conceptualism, and nominalism. Essentially these same three doctrines reappear in twentieth-century surveys of the philosophy of mathematics under the new names logicism, intuitionism, and formalism.”
—Willard Van Orman Quine (b. 1908)