In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let A be a Noetherian local ring with maximal ideal m, and suppose a1, ..., an is a minimal set of generators of m. Then in general n ≥ dim A, and A is defined to be regular if n = dim A.
The appellation regular is justified by the geometric meaning. A point x on a algebraic variety X is nonsingular if and only if the local ring of germs at x is regular. Regular local rings are not related to von Neumann regular rings.
Read more about Regular Local Ring: Characterizations, Examples, Basic Properties, Origin of Basic Notions
Famous quotes containing the words regular, local and/or ring:
“A regular council was held with the Indians, who had come in on their ponies, and speeches were made on both sides through an interpreter, quite in the described mode,the Indians, as usual, having the advantage in point of truth and earnestness, and therefore of eloquence. The most prominent chief was named Little Crow. They were quite dissatisfied with the white mans treatment of them, and probably have reason to be so.”
—Henry David Thoreau (18171862)
“America is the worlds living myth. Theres no sense of wrong when you kill an American or blame America for some local disaster. This is our function, to be character types, to embody recurring themes that people can use to comfort themselves, justify themselves and so on. Were here to accommodate. Whatever people need, we provide. A myth is a useful thing.”
—Don Delillo (b. 1926)
“I started out very quiet and I beat Turgenev. Then I trained hard and I beat de Maupassant. Ive fought two draws with Stendhal, and I think I had an edge in the last one. But nobodys going to get me in any ring with Tolstoy unless Im crazy or I keep getting better.”
—Ernest Hemingway (18991961)