Solid Oxide Regenerative Fuel Cell (SORFC)
One example of RFC is solid oxide regenerative fuel cell. Solid oxide fuel cell operates at high temperatures with high fuel to electricity conversion ratios and it is a good candidate for high temperature electrolysis. Less electricity is required for electrolysis process in SORFC due to high temperature.
The electrolyte can be O2- conducting and/or proton(H+) conducting. The state of the art for O2- conducting yttria stabilized zirconia(YSZ) based SORFC using Ni–YSZ as the hydrogen electrode and LSM (or LSM–YSZ) as the oxygen electrode has been actively studied. Dönitz and Erdle reported on the operation of YSZ electrolyte cells with current densities of 0.3 A cm−2 and 100% Faraday efficiency at only 1.07 V. The recent study by researchers from Sweden shows that ceria-based composite electrolytes, where both proton and oxide ion conductions exist, produce high current output for fuel cell operation and high hydrogen output for electrolysis operation. Zirconia doped with scandia and ceria (10Sc1CeSZ) is also investigated as potential electrolyte in SORFC for hydrogen production at intermediate temperatures(500-750°C).It is reported that 10Sc1CeSZ shows good behavior and produces high current densities, with suitable electrodes.
Current density–voltage ( j–V) curves and impedance spectra are investigated and recorded. Impedance spectra are realized applying an ac current of 1–2A RMS (root-mean-square) in the frequency range from 30 kHz to 10−1 Hz. Impedance spectra shows that the resistance is high at low frequencies(<10 kHz) and near zero at high frequencies(>10 kHz). Since high frequency corresponds to electrolyte activities, while low frequencies corresponds to electrodes process, it can be deduced that only a small fraction of the overall resistance is from the electrolyte and most resistance comes from anode and cathode. Hence, developing high performance electrodes are essential for high efficiency SORFC. Area specific resistance(ASR) can be obtained from the slope of j-V curve. Commonly used/tested electrodes materials are nickel/zirconia cermet (Ni/YSZ) and lanthanum-substituted strontium titanate/ceria composite for SORFC cathode, and lanthanum strontium manganite (LSM) for SORFC anode. Other anode materials can be lanthanum strontium ferrite (LSF), lanthanum strontium copper ferrite(LSCuF) and lanthanum strontium cobalt ferrite (LSCoF). Studies show that Ni/YSZ electrode was less active in reverse fuel cell operation than in fuel cell operation,and this can be attributed to a diffusion-limited process in the electrolysis direction, or its susceptibility to aging in a high-steam environment, primarily due to coarsening of nickel particles. Therefore, alternative materials such as the titanate/ceria composite (La0.35Sr0.65TiO3–Ce0.5La0.5O2−δ)or (La0.75Sr0.25)0.95Mn0.5Cr0.5O3 (LSCM) have been proposed electrolysis cathodes.Both LSF and LSM/YSZ are reported as good anode candidates for electrolysis mode. Furthermore,higher operation temperature and higher absolute humidity ratio(AH) can result in lower ASR.
Read more about this topic: Regenerative Fuel Cell
Famous quotes containing the words solid, fuel and/or cell:
“Self-pity comes so naturally to all of us, that the most solid happiness can be shaken by the compassion of a fool.”
—André Maurois (18851967)
“I had an old axe which nobody claimed, with which by spells in winter days, on the sunny side of the house, I played about the stumps which I had got out of my bean-field. As my driver prophesied when I was plowing, they warmed me twice,once while I was splitting them, and again when they were on the fire, so that no fuel could give out more heat. As for the axe,... if it was dull, it was at least hung true.”
—Henry David Thoreau (18171862)
“each in the cell of himself is almost convinced of his freedom,”
—W.H. (Wystan Hugh)