Reflection Principle - Reflection Principles As New Axioms

Reflection Principles As New Axioms

Bernays used a reflection principle as an axiom for one version of set theory (not Gödel-Bernays set theory, which is a weaker theory). His reflection principle stated roughly that if A is a class with some property, then one can find a transitive set u such that A∩u has the same property when considered as a subset of the "universe" u. This is quite a powerful axiom and implies the existence of several of the smaller large cardinals, such as inaccessible cardinals. (Roughly speaking, the class of all ordinals in ZFC is an inaccessible cardinal apart from the fact that it is not a set, and the reflection principle can then be used to show that there is a set which has the same property, in other words which is an inaccessible cardinal.) The consistency of Bernays's reflection principle is implied by the existence of a measurable cardinal.

There are many more powerful reflection principles, which are closely related to the various large cardinal axioms. For almost every known large cardinal axiom there is a known reflection principle that implies it, and conversely all but the most powerful known reflection principles are implied by known large cardinal axioms (Marshall R 1989).

If V is a model of ZFC and its class of ordinals is regular, i.e. there is no cofinal subclass of lower order-type, then there is a closed unbounded class of ordinals, C, such that for every αεC, the identity function from Vα to V is an elementary embedding.

Read more about this topic:  Reflection Principle

Famous quotes containing the words reflection, principles and/or axioms:

    A little reflection will enable any person to detect in himself that setness in trifles which is the result of the unwatched instinct of self-will and to establish over himself a jealous guardianship.
    Harriet Beecher Stowe (1811–1896)

    The machines that are first invented to perform any particular movement are always the most complex, and succeeding artists generally discover that, with fewer wheels, with fewer principles of motion, than had originally been employed, the same effects may be more easily produced. The first systems, in the same manner, are always the most complex.
    Adam Smith (1723–1790)

    The axioms of physics translate the laws of ethics. Thus, “the whole is greater than its part;” “reaction is equal to action;” “the smallest weight may be made to lift the greatest, the difference of weight being compensated by time;” and many the like propositions, which have an ethical as well as physical sense. These propositions have a much more extensive and universal sense when applied to human life, than when confined to technical use.
    Ralph Waldo Emerson (1803–1882)