Reflection (mathematics) - Reflection Through A Hyperplane in n Dimensions

Reflection Through A Hyperplane in n Dimensions

Given a vector a in Euclidean space Rn, the formula for the reflection in the hyperplane through the origin, orthogonal to a, is given by

where v·a denotes the dot product of v with a. Note that the second term in the above equation is just twice the vector projection of v onto a. One can easily check that

  • Refa(v) = − v, if v is parallel to a, and
  • Refa(v) = v, if v is perpendicular to a.

Using the geometric product the formula is a little simpler

Since these reflections are isometries of Euclidean space fixing the origin, they may be represented by orthogonal matrices. The orthogonal matrix corresponding to the above reflection is the matrix whose entries are

where δij is the Kronecker delta.

The formula for the reflection in the affine hyperplane not through the origin is

Read more about this topic:  Reflection (mathematics)

Famous quotes containing the words reflection and/or dimensions:

    Public morning diversions were the last dissipating habit she obtained; but when that was accomplished, her time was squandered away, the power of reflection was lost, [and] her ideas were all centered in dress, drums, routs, operas, masquerades, and every kind of public diversion. Visionary schemes of pleasure were continually present to her imagination, and her brain was whirled about by such a dizziness that she might properly be said to labor under the distemper called the vertigo.
    Sarah Fielding (1710–1768)

    I was surprised by Joe’s asking me how far it was to the Moosehorn. He was pretty well acquainted with this stream, but he had noticed that I was curious about distances, and had several maps. He and Indians generally, with whom I have talked, are not able to describe dimensions or distances in our measures with any accuracy. He could tell, perhaps, at what time we should arrive, but not how far it was.
    Henry David Thoreau (1817–1862)