Reflection Through A Hyperplane in n Dimensions
Given a vector a in Euclidean space Rn, the formula for the reflection in the hyperplane through the origin, orthogonal to a, is given by
where v·a denotes the dot product of v with a. Note that the second term in the above equation is just twice the vector projection of v onto a. One can easily check that
- Refa(v) = − v, if v is parallel to a, and
- Refa(v) = v, if v is perpendicular to a.
Using the geometric product the formula is a little simpler
Since these reflections are isometries of Euclidean space fixing the origin, they may be represented by orthogonal matrices. The orthogonal matrix corresponding to the above reflection is the matrix whose entries are
where δij is the Kronecker delta.
The formula for the reflection in the affine hyperplane not through the origin is
Read more about this topic: Reflection (mathematics)
Famous quotes containing the words reflection and/or dimensions:
“What chiefly distinguishes the daily press of the United States from the press of all other countries is not its lack of truthfulness or even its lack of dignity and honor, for these deficiencies are common to the newspapers everywhere, but its incurable fear of ideas, its constant effort to evade the discussion of fundamentals by translating all issues into a few elemental fears, its incessant reduction of all reflection to mere emotion. It is, in the true sense, never well-informed.”
—H.L. (Henry Lewis)
“I was surprised by Joes asking me how far it was to the Moosehorn. He was pretty well acquainted with this stream, but he had noticed that I was curious about distances, and had several maps. He and Indians generally, with whom I have talked, are not able to describe dimensions or distances in our measures with any accuracy. He could tell, perhaps, at what time we should arrive, but not how far it was.”
—Henry David Thoreau (18171862)