Real Numbers and Logic
The real numbers are most often formalized using the Zermelo–Fraenkel axiomatization of set theory, but some mathematicians study the real numbers with other logical foundations of mathematics. In particular, the real numbers are also studied in reverse mathematics and in constructive mathematics.
Abraham Robinson's theory of nonstandard or hyperreal numbers extends the set of the real numbers by infinitesimal numbers, which allows building infinitesimal calculus in a way closer to the usual intuition of the notion of limit. Edward Nelson's internal set theory is a non-Zermelo–Fraenkel set theory that considers non-standard real numbers as elements of the set of the reals (and not of an extension of it, as in Robinson's theory).
The continuum hypothesis posits that the cardinality of the set of the real numbers is, i.e. the smallest infinite cardinal number after, the cardinality of the integers. Paul Cohen proved in 1963 that it is an axiom independent of the other axioms of set theory; that is, one may choose either the continuum hypothesis or its negation as an axiom of set theory, without contradiction.
Read more about this topic: Real Number
Famous quotes containing the words real, numbers and/or logic:
“Who is the happy Warrior? Who is he
That every man in arms should wish to be?
It is the generous spirit, who, when brought
Among the tasks of real life, hath wrought
Upon the plan that pleased his boyish thought:
Whose high endeavors are an inward light
That makes the path before him always bright:
Who, with a natural instinct to discern
What knowledge can perform, is diligent to learn;
And in himself posses his own desire;”
—William Wordsworth (17701850)
“I had a feeling that out there, there were very poor people who didnt have enough to eat. But they wore wonderfully colored rags and did musical numbers up and down the streets together.”
—Jill Robinson (b. 1936)
“The logic of worldly success rests on a fallacy: the strange error that our perfection depends on the thoughts and opinions and applause of other men! A weird life it is, indeed, to be living always in somebody elses imagination, as if that were the only place in which one could at last become real!”
—Thomas Merton (19151968)