Examples
- If X is a sphere of odd dimension 2n + 1 > 1, its minimal Sullivan model has 1 generator a of degree 2n + 1 with da = 0, and a basis of elements 1, a.
- If X is a sphere of even dimension 2n > 0, its minimal Sullivan model has 2 generators a and b of degrees 2n and 4n − 1, with db = a2, da = 0, and a basis of elements 1, a, b→ a2, ab→a3, a2b→a4, ... where the arrow indicated the action of d.
- Suppose that V has 4 elements a, b, x, y of degrees 2, 3, 3 and 4 with differentials da = 0, db = 0, dx = a2, dy = ab. Then this algebra is a minimal Sullivan algebra that is not formal. The cohomology algebra has nontrivial components only in dimension 2,3,6, generated respectively by a, b and xb-ay. Any homomorphism from V to its cohomology algebra would map y to 0, x to a multiple of b, so it would surely map xb-ay to 0. So V cannot be a model for its cohomology algebra. The corresponding topological spaces are two spaces with the same rational cohomology ring but different rational homotopy types. Notice that xb-ay is in the Massey product .
Read more about this topic: Rational Homotopy Theory
Famous quotes containing the word examples:
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)
“Histories are more full of examples of the fidelity of dogs than of friends.”
—Alexander Pope (16881744)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)