Rank Of An Abelian Group
In mathematics, the rank, Prüfer rank, or torsion-free rank of an abelian group A is the cardinality of a maximal linearly independent subset. The rank of A determines the size of the largest free abelian group contained in A. If A is torsion-free then it embeds into a vector space over the rational numbers of dimension rank A. For finitely generated abelian groups, rank is a strong invariant and every such group is determined up to isomorphism by its rank and torsion subgroup. Torsion-free abelian groups of rank 1 have been completely classified. However, the theory of abelian groups of higher rank is more involved.
The term rank has a different meaning in the context of elementary abelian groups.
Read more about Rank Of An Abelian Group: Definition, Properties, Groups of Higher Rank, Generalization
Famous quotes containing the words rank of, rank and/or group:
“West of this place, down in the neighbor bottom,
The rank of osiers by the murmuring stream
Left on your right hand brings you to the place.”
—William Shakespeare (15641616)
“The rank and file have let their servants become their masters and dictators.... Provision should be made in all union constitutions for the recall of leaders. Big salaries should not be paid. Career hunters should be driven out, as well as leaders who use labor for political ends. These types are menaces to the advancement of labor.”
—Mother Jones (18301930)
“It is not God that is worshipped but the group or authority that claims to speak in His name. Sin becomes disobedience to authority not violation of integrity.”
—Sarvepalli, Sir Radhakrishnan (18881975)