A random graph is obtained by starting with a set of n vertices and adding edges between them at random. Different random graph models produce different probability distributions on graphs. Most commonly studied is the one proposed by Edgar Gilbert, denoted G(n,p), in which every possible edge occurs independently with probability p. A closely related model, the Erdős–Rényi model denoted G(n,M), assigns equal probability to all graphs with exactly M edges. The fastest known algorithm for generating the former model is proposed by Nobari et al. in. The latter model can be viewed as a snapshot at a particular time (M) of the random graph process, which is a stochastic process that starts with n vertices and no edges, and at each step adds one new edge chosen uniformly from the set of missing edges.
If instead we start with an infinite set of vertices, and again let every possible edge occur independently with probability p, then we get an object G called an infinite random graph. Except in the trivial cases when p is 0 or 1, such a G almost surely has the following property:
- Given any elements, there is a vertex that is adjacent to each of and is not adjacent to any of .
It turns out that if the vertex set is countable then there is, up to isomorphism, only a single graph with this property, namely the Rado graph. Thus any countably infinite random graph is almost surely the Rado graph, which for this reason is sometimes called simply the random graph. However, the analogous result is not true for uncountable graphs, of which there are many (nonisomorphic) graphs satisfying the above property.
Another model, which generalizes Gilbert's random graph model, is the random dot-product model. A random dot-product graph associates with each vertex a real vector. The probability of an edge uv between any vertices u and v is some function of the dot product u • v of their respective vectors.
The network probability matrix models random graphs through edge probabilities, which represent the probability that a given edge exists for a specified time period. This model is extensible to directed and undirected; weighted and unweighted; and static or dynamic graphs.
For the two most widely used models, G(n,M) and G(n,p), are almost interchangeable.
Random regular graphs form a special case, with properties that may differ from random graphs in general.
Read more about this topic: Random Graph
Famous quotes containing the words random, graph and/or models:
“Man always made, and still makes, grotesque blunders in selecting and measuring forces, taken at random from the heap, but he never made a mistake in the value he set on the whole, which he symbolized as unity and worshipped as God. To this day, his attitude towards it has never changed, though science can no longer give to force a name.”
—Henry Brooks Adams (18381918)
“When producers want to know what the public wants, they graph it as curves. When they want to tell the public what to get, they say it in curves.”
—Marshall McLuhan (19111980)
“The greatest and truest models for all orators ... is Demosthenes. One who has not studied deeply and constantly all the great speeches of the great Athenian, is not prepared to speak in public. Only as the constant companion of Demosthenes, Burke, Fox, Canning and Webster, can we hope to become orators.”
—Woodrow Wilson (18561924)