Quotient Space - Definition

Definition

Let (X,τX) be a topological space, and let ~ be an equivalence relation on X. The quotient space, is defined to be the set of equivalence classes of elements of X:

equipped with the topology where the open sets are defined to be those sets of equivalence classes whose unions are open sets in X:

Equivalently, we can define them to be those sets with an open preimage under the quotient map which sends a point in X to the equivalence class containing it.

The quotient topology is the final topology on the quotient space with respect to the quotient map.

Read more about this topic:  Quotient Space

Famous quotes containing the word definition:

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)