Quotient Group - Definition

Definition

Let N be a normal subgroup of a group G. We define the set G/N to be the set of all left cosets of N in G, i.e., G/N = { aN : a in G }. The group operation on G/N is the product of subsets defined above. In other words, for each aN and bN in G/N, the product of aN and bN is (aN)(bN). This operation is closed, because (aN)(bN) really is a left coset:

(aN)(bN) = a(Nb)N = a(bN)N = (ab)NN = (ab)N.

The normality of N is used in this equation. Because of the normality of N, the left cosets and right cosets of N in G are equal, and so G/N could be defined as the set of right cosets of N in G. Because the operation is derived from the product of subsets of G, the operation is well-defined (does not depend on the particular choice of representatives), associative, and has identity element N. The inverse of an element aN of G/N is a−1N.

For example, consider the group with addition modulo 6:

G = {0, 1, 2, 3, 4, 5}.

Let

N = {0, 3}.

The quotient group is:

G/N = { aN : a ∈ G } = { a{0, 3} : a ∈ {0, 1, 2, 3, 4, 5} } =
{ 0{0, 3}, 1{0, 3}, 2{0, 3}, 3{0, 3}, 4{0, 3}, 5{0, 3} } =
{ {(0+0) mod 6, (0+3) mod 6}, {(1+0) mod 6, (1+3) mod 6},
{(2+0) mod 6, (2+3) mod 6}, {(3+0) mod 6, (3+3) mod 6},
{(4+0) mod 6, (4+3) mod 6}, {(5+0) mod 6, (5+3) mod 6} } =
{ {0, 3}, {1, 4}, {2, 5}, {3, 0}, {4, 1}, {5, 2} } =
{ {0, 3}, {1, 4}, {2, 5}, {0, 3}, {1, 4}, {2, 5} } =
{ {0, 3}, {1, 4}, {2, 5} }.

The basic argument above is still valid if G/N is defined to be the set of all right cosets.

Read more about this topic:  Quotient Group

Famous quotes containing the word definition:

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)