Quasi-algebraically Closed Field - Ck Fields

Ck Fields

Quasi-algebraically closed fields are also called C1. A Ck field, more generally, is one for which any homogeneous polynomial of degree d in N variables has a non-trivial zero, provided

dk < N,

for k ≥ 1. If a field is Ci then so is a finite extension. The C0 fields are precisely the algebraically closed fields.

Lang and Nagata proved that if a field is Ck, then any extension of transcendence degree n is Ck+n. The smallest k such that K is a Ck field ( if no such number exists), is called the diophantine dimension dd(K) of K.

Read more about this topic:  Quasi-algebraically Closed Field

Famous quotes containing the word fields:

    And sweet it was to dream of Fatherland,
    Of child, and wife, and slave; but evermore
    Most weary seemed the sea, weary the oar,
    Weary the wandering fields of barren foam.
    Alfred Tennyson (1809–1892)