Quasi-algebraically Closed Field
In mathematics, a field F is called quasi-algebraically closed (or C1) if every non-constant homogeneous polynomial P over F has a non-trivial zero provided the number of its variables is more than its degree. The idea of quasi-algebraically closed fields was investigated by C. C. Tsen, a student of Emmy Noether in a 1936 paper; and later in the 1951 Princeton University dissertation of Serge Lang. The idea itself is attributed to Lang's advisor Emil Artin.
Formally, if P is a non-constant homogeneous polynomial in variables
- X1, ..., XN,
and of degree d satisfying
- d < N
then it has a non-trivial zero over F; that is, for some xi in F, not all 0, we have
- P(x1, ..., xN) = 0.
In geometric language, the hypersurface defined by P, in projective space of dimension N − 1, then has a point over F.
Read more about Quasi-algebraically Closed Field: Examples, Properties, Ck Fields
Famous quotes containing the words closed and/or field:
“Alas for the cripple Practice when it seeks to come up with the bird Theory, which flies before it. Try your design on the best school. The scholars are of all ages and temperaments and capacities. It is difficult to class them, some are too young, some are slow, some perverse. Each requires so much consideration, that the morning hope of the teacher, of a day of love and progress, is often closed at evening by despair.”
—Ralph Waldo Emerson (18031882)
“Hardly a book of human worth, be it heavens own secret, is honestly placed before the reader; it is either shunned, given a Periclean funeral oration in a hundred and fifty words, or interred in the potters field of the newspapers back pages.”
—Edward Dahlberg (19001977)