Quantum Zeno Effect - Description

Description

Unstable quantum systems are predicted to exhibit a short time deviation from the exponential decay law. This universal phenomenon has led to the prediction that frequent measurements during this nonexponential period could inhibit decay of the system, one form of the quantum Zeno effect. Subsequently, it was predicted that an enhancement of decay due to frequent measurements could be observed under somewhat more general conditions, leading to the so-called anti-Zeno effect.

In quantum mechanics, the interaction mentioned is called "measurement" because its result can be interpreted in terms of classical mechanics. Frequent measurement prohibits the transition. It can be a transition of a particle from one half-space to another (which could be used for atomic mirror in an atomic nanoscope) as in the time of arrival problem, a transition of a photon in a waveguide from one mode to another, and it can be a transition of an atom from one quantum state to another. It can be a transition from the subspace without decoherent loss of a q-bit to a state with a q-bit lost in a quantum computer. In this sense, for the q-bit correction, it is sufficient to determine whether the decoherence has already occurred or not. All these can be considered as applications of the Zeno effect. By its nature, the effect appears only in systems with distinguishable quantum states, and hence is inapplicable to classical phenomena and macroscopic bodies.

Read more about this topic:  Quantum Zeno Effect

Famous quotes containing the word description:

    Do not require a description of the countries towards which you sail. The description does not describe them to you, and to- morrow you arrive there, and know them by inhabiting them.
    Ralph Waldo Emerson (1803–1882)

    To give an accurate description of what has never occurred is not merely the proper occupation of the historian, but the inalienable privilege of any man of parts and culture.
    Oscar Wilde (1854–1900)

    A sound mind in a sound body, is a short, but full description of a happy state in this World: he that has these two, has little more to wish for; and he that wants either of them, will be little the better for anything else.
    John Locke (1632–1704)