Quality Control
Alternative quality control (QC) procedures can be applied on a process to test statistically the null hypothesis, that the process conforms to the quality requirements, therefore that the process is in control, against the alternative, that the process is out of control. When a true null hypothesis is rejected, a statistical type I error is committed. We have then a false rejection of a run of the process. The probability of a type I error is called probability of false rejection. When a false null hypothesis is accepted, a statistical type II error is committed. We fail then to detect a significant change in the process. The probability of rejection of a false null hypothesis equals the probability of detection of the nonconformity of the process to the quality requirements.
The QC procedure to be designed or optimized can be formulated as:
Q1(n1,X1)# Q2(n2,X2) #...# Qq(nq,Xq) (1)
where Qi(ni,Xi) denotes a statistical decision rule, ni denotes the size of the sample Si, that is the number of the samples the rule is applied upon, and Xi denotes the vector of the rule specific parameters, including the decision limits. Each symbol # denotes either the Boolean operator AND or the operator OR. Obviously, for # denoting AND, and for n1 < n2 <...< nq, that is for S1 S2 .... Sq, the (1) denotes a q-sampling QC procedure.
Each statistical decision rule is evaluated by calculating the respective statistic of a monitored variable of samples taken from the process. Then, if the statistic is out of the interval between the decision limits, the decision rule is considered to be true. Many statistics can be used, including the following: a single value of the variable of a sample, the range, the mean, and the standard deviation of the values of the variable of the samples, the cumulative sum, the smoothed mean, and the smoothed standard deviation. Finally, the QC procedure is evaluated as a Boolean proposition. If it is true, then the null hypothesis is considered to be false, the process is considered to be out of control, and the run is rejected.
A quality control procedure is considered to be optimum when it minimizes (or maximizes) a context specific objective function. The objective function depends on the probabilities of detection of the nonconformity of the process and of false rejection. These probabilities depend on the parameters of the quality control procedure (1) and on the probability density functions (see probability density function) of the monitored variables of the process.
Read more about this topic: Quality Control And Genetic Algorithms
Famous quotes containing the words quality and/or control:
“One is conscious of no brave and noble earnestness in it, of no generalized passion for intellectual and spiritual adventure, of no organized determination to think things out. What is there is a highly self-conscious and insipid correctness, a bloodless respectability submergence of matter in mannerin brief, what is there is the feeble, uninspiring quality of German painting and English music.”
—H.L. (Henry Lewis)
“Knowledge in the form of an informational commodity indispensable to productive power is already, and will continue to be, a majorperhaps the majorstake in the worldwide competition for power. It is conceivable that the nation-states will one day fight for control of information, just as they battled in the past for control over territory, and afterwards for control over access to and exploitation of raw materials and cheap labor.”
—Jean François Lyotard (b. 1924)