Quadratic Differential - Local Form

Local Form

Each quadratic differential on a domain in the complex plane may be written as where is the complex variable and is a complex valued function on . Such a `local' quadratic differential is holomorphic if and only if is holomorphic. Given a chart for a general Riemann surface and a quadratic differential on, the pull-back defines a quadratic differential on a domain in the complex plane.

Read more about this topic:  Quadratic Differential

Famous quotes containing the words local and/or form:

    America is the world’s living myth. There’s no sense of wrong when you kill an American or blame America for some local disaster. This is our function, to be character types, to embody recurring themes that people can use to comfort themselves, justify themselves and so on. We’re here to accommodate. Whatever people need, we provide. A myth is a useful thing.
    Don Delillo (b. 1926)

    I am afraid I am one of those people who continues to read in the hope of sometime discovering in a book a single—and singular—piece of wisdom so penetrating, so soul stirring, so utterly applicable to my own life as to make all the bad books I have read seem well worth the countless hours spent on them. My guess is that this wisdom, if it ever arrives, will do so in the form of a generalization.
    Joseph Epstein (b. 1937)