Q-difference Polynomial - Definition

Definition

The q-difference polynomials satisfy the relation

\left(\frac {d}{dz}\right)_q p_n(z) =
\frac{p_n(qz)-p_n(z)} {qz-z} = p_{n-1}(z)

where the derivative symbol on the left is the q-derivative. In the limit of, this becomes the definition of the Appell polynomials:

Read more about this topic:  Q-difference Polynomial

Famous quotes containing the word definition:

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)