Definition of Pseudo-differential Operators
Here we view pseudo-differential operators as a generalization of differential operators. We extend formula (1) as follows. A pseudo-differential operator P(x,D) on Rn is an operator whose value on the function u(x) is the function of x:
-
(2)
where the symbol P(x,ξ) in the integrand belongs to a certain symbol class. For instance, if P(x,ξ) is an infinitely differentiable function on Rn × Rn with the property
for all x,ξ ∈Rn, all multiindices α,β. some constants Cα, β and some real number m, then P belongs to the symbol class of Hörmander. The corresponding operator P(x,D) is called a pseudo-differential operator of order m and belongs to the class
Read more about this topic: Pseudo-differential Operator
Famous quotes containing the words definition of and/or definition:
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)