Proof
Towards a contradiction, suppose that e is a rational number. Then there exist positive integers a and b such that e = a/b where clearly b > 1.
Define the number
To see that if e is rational, then x is an integer, substitute e = a/b into this definition to obtain
The first term is an integer, and every fraction in the sum is actually an integer because n ≤ b for each term. Therefore x is an integer.
We now prove that 0 < x < 1. First, to prove that x is strictly positive, we insert the above series representation of e into the definition of x and obtain
because all the terms with n ≤ b cancel and the remaining ones are strictly positive.
We now prove that x < 1. For all terms with n ≥ b + 1 we have the upper estimate
This inequality is strict for every n ≥ b + 2. Changing the index of summation to k = n – b and using the formula for the infinite geometric series, we obtain
Since there is no integer strictly between 0 and 1, we have reached a contradiction, and so e must be irrational. Q.E.D.
The above proof can be found in Proofs from THE BOOK, where the stronger result that eq is irrational for any non-zero rational q is also proved.
Read more about this topic: Proof That e Is Irrational
Famous quotes containing the word proof:
“The thing with Catholicism, the same as all religions, is that it teaches what should be, which seems rather incorrect. This is what should be. Now, if youre taught to live up to a what should be that never existedonly an occult superstition, no proof of this should beMthen you can sit on a jury and indict easily, you can cast the first stone, you can burn Adolf Eichmann, like that!”
—Lenny Bruce (19251966)
“Ah! I have penetrated to those meadows on the morning of many a first spring day, jumping from hummock to hummock, from willow root to willow root, when the wild river valley and the woods were bathed in so pure and bright a light as would have waked the dead, if they had been slumbering in their graves, as some suppose. There needs no stronger proof of immortality. All things must live in such a light. O Death, where was thy sting? O Grave, where was thy victory, then?”
—Henry David Thoreau (18171862)
“A short letter to a distant friend is, in my opinion, an insult like that of a slight bow or cursory salutationa proof of unwillingness to do much, even where there is a necessity of doing something.”
—Samuel Johnson (17091784)