Proof That e Is Irrational - Proof

Proof

Towards a contradiction, suppose that e is a rational number. Then there exist positive integers a and b such that e = a/b where clearly b > 1.

Define the number


x = b!\,\biggl(e - \sum_{n = 0}^{b} \frac{1}{n!}\biggr)\!

To see that if e is rational, then x is an integer, substitute e = a/b into this definition to obtain


x = b!\,\biggl(\frac{a}{b} - \sum_{n = 0}^{b} \frac{1}{n!}\biggr)
= a(b - 1)! - \sum_{n = 0}^{b} \frac{b!}{n!}\,.

The first term is an integer, and every fraction in the sum is actually an integer because nb for each term. Therefore x is an integer.

We now prove that 0 < x < 1. First, to prove that x is strictly positive, we insert the above series representation of e into the definition of x and obtain

because all the terms with nb cancel and the remaining ones are strictly positive.

We now prove that x < 1. For all terms with nb + 1 we have the upper estimate

\frac{b!}{n!}
=\frac1{(b+1)(b+2)\cdots(b+(n-b))}
\le\frac1{(b+1)^{n-b}}\,.\!

This inequality is strict for every nb + 2. Changing the index of summation to k = nb and using the formula for the infinite geometric series, we obtain


x
=\sum_{n = b+1}^\infty \frac{b!}{n!}
< \sum_{n=b+1}^\infty \frac1{(b+1)^{n-b}}
=\sum_{k=1}^\infty \frac1{(b+1)^k}
=\frac{1}{b+1} \biggl(\frac1{1-\frac1{b+1}}\biggr)
= \frac{1}{b}
< 1.

Since there is no integer strictly between 0 and 1, we have reached a contradiction, and so e must be irrational. Q.E.D.

The above proof can be found in Proofs from THE BOOK, where the stronger result that eq is irrational for any non-zero rational q is also proved.

Read more about this topic:  Proof That e Is Irrational

Famous quotes containing the word proof:

    The thing with Catholicism, the same as all religions, is that it teaches what should be, which seems rather incorrect. This is “what should be.” Now, if you’re taught to live up to a “what should be” that never existed—only an occult superstition, no proof of this “should be”Mthen you can sit on a jury and indict easily, you can cast the first stone, you can burn Adolf Eichmann, like that!
    Lenny Bruce (1925–1966)

    Ah! I have penetrated to those meadows on the morning of many a first spring day, jumping from hummock to hummock, from willow root to willow root, when the wild river valley and the woods were bathed in so pure and bright a light as would have waked the dead, if they had been slumbering in their graves, as some suppose. There needs no stronger proof of immortality. All things must live in such a light. O Death, where was thy sting? O Grave, where was thy victory, then?
    Henry David Thoreau (1817–1862)

    A short letter to a distant friend is, in my opinion, an insult like that of a slight bow or cursory salutation—a proof of unwillingness to do much, even where there is a necessity of doing something.
    Samuel Johnson (1709–1784)