Proof Size Comparison
A second question about proof complexity is whether a method is more efficient than another. Since the proof size depends on the formula, it is possible that one method can produce a short proof of a formula and only long proofs of another formula, while a second method can have exactly the opposite behavior. The assumptions of measuring the size of the proofs relative to the size of the formula and considering only the shortest proofs are also used in this context.
When comparing two proof methods, two outcomes are possible:
- for every proof of a formula produced using the first method, there is a proof of comparable size of the same formula produced by the second method;
- there exists a formula such that the first method can produce a short proof while all proofs obtained by the second method are consistently larger.
Several proofs of the second kind involve contradictory formulae expressing the negation of the pigeonhole principle, namely that pigeons can fit holes with no hole containing two or more pigeons.
Read more about this topic: Proof Complexity
Famous quotes containing the words proof, size and/or comparison:
“From whichever angle one looks at it, the application of racial theories remains a striking proof of the lowered demands of public opinion upon the purity of critical judgment.”
—Johan Huizinga (18721945)
“There are some persons we could not cut down to size without diminishing ourselves as well.”
—Jean Rostand (18941977)
“Certainly there is not the fight recorded in Concord history, at least, if in the history of America, that will bear a moments comparison with this, whether for the numbers engaged in it, or for the patriotism and heroism displayed.”
—Henry David Thoreau (18171862)