Proof Complexity - Proof Size Comparison

Proof Size Comparison

A second question about proof complexity is whether a method is more efficient than another. Since the proof size depends on the formula, it is possible that one method can produce a short proof of a formula and only long proofs of another formula, while a second method can have exactly the opposite behavior. The assumptions of measuring the size of the proofs relative to the size of the formula and considering only the shortest proofs are also used in this context.

When comparing two proof methods, two outcomes are possible:

  1. for every proof of a formula produced using the first method, there is a proof of comparable size of the same formula produced by the second method;
  2. there exists a formula such that the first method can produce a short proof while all proofs obtained by the second method are consistently larger.

Several proofs of the second kind involve contradictory formulae expressing the negation of the pigeonhole principle, namely that pigeons can fit holes with no hole containing two or more pigeons.

Read more about this topic:  Proof Complexity

Famous quotes containing the words proof, size and/or comparison:

    There are some persons in this world, who, unable to give better proof of being wise, take a strange delight in showing what they think they have sagaciously read in mankind by uncharitable suspicions of them.
    Herman Melville (1819–1891)

    In mathematics he was greater
    Than Tycho Brahe, or Erra Pater:
    For he, by geometric scale,
    Could take the size of pots of ale;
    Resolve, by sines and tangents straight,
    If bread and butter wanted weight;
    And wisely tell what hour o’ th’ day
    The clock doth strike, by algebra.
    Samuel Butler (1612–1680)

    [Girls] study under the paralyzing idea that their acquirements cannot be brought into practical use. They may subserve the purposes of promoting individual domestic pleasure and social enjoyment in conversation, but what are they in comparison with the grand stimulation of independence and self- reliance, of the capability of contributing to the comfort and happiness of those whom they love as their own souls?
    Sarah M. Grimke (1792–1873)