Projective Space As The Model Geometry
The first step in defining any Cartan connection is to consider the flat case: in which the connection corresponds to the Maurer-Cartan form on a homogeneous space.
In the projective setting, the underlying manifold M of the homogeneous space is the projective space RPn which we shall represent by homogeneous coordinates . The symmetry group of M is G = PSL(n+1,R). Let H be the isotropy group of the point . Thus, M = G/H presents M as a homogeneous space.
Let be the Lie algebra of G, and that of H. Note that . As matrices relative to the homogeneous basis, consists of trace-free (n+1)×(n+1) matrices:
.
And consists of all these matrices with (wj) = 0. Relative to the matrix representation above, the Maurer-Cartan form of G is a system of 1-forms (ζ, αj, αji, αi) satisfying the structural equations
- dζ + ∑i αi∧αi = 0
- dαj + αj∧ζ + ∑k αjk∧αk = 0
- dαji + αi∧αj + ∑k αki∧αjk = 0
- dαi + ζ∧αi + ∑kαk∧αki = 0
Read more about this topic: Projective Connection
Famous quotes containing the words space, model and/or geometry:
“When Paul Bunyans loggers roofed an Oregon bunkhouse with shakes, fog was so thick that they shingled forty feet into space before discovering they had passed the last rafter.”
—State of Oregon, U.S. public relief program (1935-1943)
“The playing adult steps sideward into another reality; the playing child advances forward to new stages of mastery....Childs play is the infantile form of the human ability to deal with experience by creating model situations and to master reality by experiment and planning.”
—Erik H. Erikson (20th century)
“I am present at the sowing of the seed of the world. With a geometry of sunbeams, the soul lays the foundations of nature.”
—Ralph Waldo Emerson (18031882)