Projective Space As The Model Geometry
The first step in defining any Cartan connection is to consider the flat case: in which the connection corresponds to the Maurer-Cartan form on a homogeneous space.
In the projective setting, the underlying manifold M of the homogeneous space is the projective space RPn which we shall represent by homogeneous coordinates . The symmetry group of M is G = PSL(n+1,R). Let H be the isotropy group of the point . Thus, M = G/H presents M as a homogeneous space.
Let be the Lie algebra of G, and that of H. Note that . As matrices relative to the homogeneous basis, consists of trace-free (n+1)×(n+1) matrices:
.
And consists of all these matrices with (wj) = 0. Relative to the matrix representation above, the Maurer-Cartan form of G is a system of 1-forms (ζ, αj, αji, αi) satisfying the structural equations
- dζ + ∑i αi∧αi = 0
- dαj + αj∧ζ + ∑k αjk∧αk = 0
- dαji + αi∧αj + ∑k αki∧αjk = 0
- dαi + ζ∧αi + ∑kαk∧αki = 0
Read more about this topic: Projective Connection
Famous quotes containing the words space, model and/or geometry:
“This moment exhibits infinite space, but there is a space also wherein all moments are infinitely exhibited, and the everlasting duration of infinite space is another region and room of joys.”
—Thomas Traherne (16361674)
“The playing adult steps sideward into another reality; the playing child advances forward to new stages of mastery....Childs play is the infantile form of the human ability to deal with experience by creating model situations and to master reality by experiment and planning.”
—Erik H. Erikson (20th century)
“... geometry became a symbol for human relations, except that it was better, because in geometry things never go bad. If certain things occur, if certain lines meet, an angle is born. You cannot fail. Its not going to fail; it is eternal. I found in rules of mathematics a peace and a trust that I could not place in human beings. This sublimation was total and remained total. Thus, Im able to avoid or manipulate or process pain.”
—Louise Bourgeois (b. 1911)