Projection-valued Measure - Extensions of Projection-valued Measures

Extensions of Projection-valued Measures

If π is an additive projection-valued measure on (X, M), then the map

extends to a linear map on the vector space of step functions on X. In fact, it is easy to check that this map is a ring homomorphism. In fact this map extends in a canonical way to all bounded complex-valued Borel functions on X.

Theorem. For any bounded M-measurable function f on X, there is a unique bounded linear operator Tπ(f) such that

for all ξ, η ∈ H. The map

is a homomorphism of rings.

Read more about this topic:  Projection-valued Measure

Famous quotes containing the words extensions of, extensions and/or measures:

    The psychological umbilical cord is more difficult to cut than the real one. We experience our children as extensions of ourselves, and we feel as though their behavior is an expression of something within us...instead of an expression of something in them. We see in our children our own reflection, and when we don’t like what we see, we feel angry at the reflection.
    Elaine Heffner (20th century)

    The psychological umbilical cord is more difficult to cut than the real one. We experience our children as extensions of ourselves, and we feel as though their behavior is an expression of something within us...instead of an expression of something in them. We see in our children our own reflection, and when we don’t like what we see, we feel angry at the reflection.
    Elaine Heffner (20th century)

    However much we may differ in the choice of the measures which should guide the administration of the government, there can be but little doubt in the minds of those who are really friendly to the republican features of our system that one of its most important securities consists in the separation of the legislative and executive powers at the same time that each is acknowledged to be supreme, in the will of the people constitutionally expressed.
    Andrew Jackson (1767–1845)