Principles and Standards For School Mathematics

Principles and Standards for School Mathematics are guidelines produced by the National Council of Teachers of Mathematics (NCTM) in 2000, setting forth recommendations for mathematics educators. They form a national vision for preschool through twelfth grade mathematics education in the US and Canada. It is the primary model for standards-based mathematics.

The NCTM employed a consensus process that involved classroom teachers, mathematicians, and educational researchers. The resulting document sets forth a set of six principles (Equity, Curriculum, Teaching, Learning, Assessment, and Technology) that describe NCTM's recommended framework for mathematics programs, and ten general strands or standards that cut across the school mathematics curriculum. These strands are divided into mathematics content (Number and Operations, Algebra, Geometry, Measurement, and Data Analysis and Probability) and processes (Problem Solving, Reasoning and Proof, Communication, Connections, and Representation). Specific expectations for student learning are described for ranges of grades (preschool to 2, 3 to 5, 6 to 8, and 9 to 12).

Read more about Principles And Standards For School Mathematics:  Origins, Six Principles, Standards, Curriculum Focal Points, Controversy

Famous quotes containing the words principles, standards, school and/or mathematics:

    Unless democracy is to commit suicide by consenting to its own destruction, it will have to find some formidable answer to those who come to it saying: “I demand from you in the name of your principles the rights which I shall deny to you later in the name of my principles.”
    Walter Lippmann (1889–1974)

    It gives me the greatest pleasure to say, as I do from the bottom of my heart, that never in the history of the country, in any crisis and under any conditions, have our Jewish fellow citizens failed to live up to the highest standards of citizenship and patriotism.
    William Howard Taft (1857–1930)

    One non-revolutionary weekend is infinitely more bloody than a month of permanent revolution.
    Graffiti, School of Oriental Languages, London (1968)

    Mathematics alone make us feel the limits of our intelligence. For we can always suppose in the case of an experiment that it is inexplicable because we don’t happen to have all the data. In mathematics we have all the data ... and yet we don’t understand. We always come back to the contemplation of our human wretchedness. What force is in relation to our will, the impenetrable opacity of mathematics is in relation to our intelligence.
    Simone Weil (1909–1943)