Principle of Maximum Entropy

In Bayesian probability theory, the principle of maximum entropy is a prime doctrine. It states that, subject to precisely stated prior data, which must be a proposition that expresses testable information, the probability distribution which best represents the current state of knowledge is the one with largest information-theoretical entropy.

Let some precisely stated prior data or testable information about a probability distribution function be given. Consider the set of all trial probability distributions that encode the prior data. Of those, the one that maximizes the information entropy is the proper probability distribution under the given prior data.

Read more about Principle Of Maximum Entropy:  History, Overview, Testable Information, Justifications For The Principle of Maximum Entropy

Famous quotes containing the words principle of, principle, maximum and/or entropy:

    I ... observed the great beauty of American government to be, that the simple machines of representation, carried through all its parts, gives facility for a being moulded at will to fit with the knowledge of the age; that thus, although it should be imperfect in any or all of its parts, it bears within it a perfect principle the principle of improvement.

    Frances Wright (1795–1852)

    An evident principle ... is the principle of justice to all peoples and nationalities, and their right to live on equal terms of liberty and safety with one another, whether they be strong or weak.
    Woodrow Wilson (1856–1924)

    I had a quick grasp of the secret to sanity—it had become the ability to hold the maximum of impossible combinations in one’s mind.
    Norman Mailer (b. 1923)

    Just as the constant increase of entropy is the basic law of the universe, so it is the basic law of life to be ever more highly structured and to struggle against entropy.
    Václav Havel (b. 1936)