Primitive Ring - Definition

Definition

A ring R is said to be a left primitive ring if and only if it has a faithful simple left R-module. A right primitive ring is defined similarly with right R-modules. There are rings which are primitive on one side but not on the other. The first example was constructed by George M. Bergman in (Bergman 1964). Another example found by Jategaonkar showing the distinction can be found in (Rowen 1988, p.159)

An internal characterization of left primitive rings is as follows: a ring is left primitive if and only if there is a maximal left ideal containing no nonzero two-sided ideals. The analogous definition for right primitive rings is also valid.

The structure of left primitive rings is completely determined by the Jacobson density theorem: A ring is left primitive if and only if it is isomorphic to a dense subring of the ring of endomorphisms of a left vector space over a division ring.

Another equivalent definition states that a ring is left primitive if and only if it is a prime ring with a faithful left module of finite length.

Read more about this topic:  Primitive Ring

Famous quotes containing the word definition:

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)