Relationship To Recursive Functions
The broader class of partial recursive functions is defined by introducing an unbounded search operator. The use of this operator may result in a partial function, that is, a relation with at most one value for each argument, but does not necessarily have any value for any argument (see domain). An equivalent definition states that a partial recursive function is one that can be computed by a Turing machine. A total recursive function is a partial recursive function that is defined for every input.
Every primitive recursive function is total recursive, but not all total recursive functions are primitive recursive. The Ackermann function A(m,n) is a well-known example of a total recursive function that is not primitive recursive. There is a characterization of the primitive recursive functions as a subset of the total recursive functions using the Ackermann function. This characterization states that a function is primitive recursive if and only if there is a natural number m such that the function can be computed by a Turing machine that always halts within A(m,n) or fewer steps, where n is the sum of the arguments of the primitive recursive function.
An important property of the primitive recursive functions is that they are a recursively enumerable subset of the set of all total recursive functions (which is not itself recursively enumerable). This means that there is a single computable function f(e,n) such that:
- For every primitive recursive function g, there is an e such that g(n) = f(e,n) for all n, and
- For every e, the function h(n) = f(e,n) is primitive recursive.
However, the primitive recursive functions are not the largest recursively enumerable set of total computable functions.
Read more about this topic: Primitive Recursive Function
Famous quotes containing the words relationship to, relationship and/or functions:
“Poetry is above all a concentration of the power of language, which is the power of our ultimate relationship to everything in the universe.”
—Adrienne Rich (b. 1929)
“Most childhood problems dont result from bad parenting, but are the inevitable result of the growing that parents and children do together. The point isnt to head off these problems or find ways around them, but rather to work through them together and in doing so to develop a relationship of mutual trust to rely on when the next problem comes along.”
—Fred Rogers (20th century)
“Empirical science is apt to cloud the sight, and, by the very knowledge of functions and processes, to bereave the student of the manly contemplation of the whole.”
—Ralph Waldo Emerson (18031882)