Prime Ideal - Important Facts

Important Facts

  • Prime avoidance lemma: If R is a commutative ring, and A is a subring (possibly without unity), and I1,...,In is a collection of ideals of R with at most two members not prime, then if A is not contained in any Ij, it is also not contained in the union of I1,...,In. In particular, A could be an ideal of R.
  • If S is any m-system in R, then a lemma essentially due to Krull shows that there exists an ideal of R maximal with respect to being disjoint from S, and moreover the ideal must be prime. In the case {S}={1}, we have Krull's theorem, and this recovers the maximal ideals of R. Another prototypical m-system is the set of all positive powers of a non-nilpotent element.
  • For a prime ideal P, the complement R\P has another property beyond being an m-system. If xy is in R\P, then both x and y must be in R\P, since P is an ideal. A set which contains the divisors of its elements is called saturated.
  • For a commutative ring R, there is a kind of converse for the previous statement: If S is any nonempty saturated and multiplicatively closed subset of R, the complement R\S is a union of prime ideals of R.
  • The union and the intersection of a chain of prime ideals is a prime ideal. With Zorn's Lemma, this implies that the poset of prime ideals (partially ordered by inclusion) has maximal and minimal elements.

Read more about this topic:  Prime Ideal

Famous quotes containing the words important and/or facts:

    Criticism is a study by which men grow important and formidable at very small expense. The power of invention has been conferred by nature upon few, and the labour of learning those sciences which may, by mere labour, be obtained, is too great to be willingly endured; but every man can exert some judgment as he has upon the works of others; and he whom nature has made weak, and idleness keeps ignorant, may yet support his vanity by the name of critic.
    Samuel Johnson (1709–1784)

    Now, what I want is, Facts. Teach these boys and girls nothing but Facts. Facts alone are wanted in life. Plant nothing else, and root out everything else. You can only form the minds of reasoning animals upon Facts: nothing else will ever be of any service to them. This is the principle on which I bring up my own children, and this is the principle on which I bring up these children. Stick to Facts, sir!
    Charles Dickens (1812–1870)