Mechanical Power
Power in mechanical systems is the combination of forces and movement. In particular, power is the product of a force on an object and the object's velocity, or the product of a torque on a shaft and the shaft's angular velocity.
Mechanical power is also described as the time derivative of work. In mechanics, the work done by a force F on an object that travels along a curve C is given by the line integral:
where x defines the path C and v is the velocity along this path. The time derivative of the equation for work yields the instantaneous power,
In rotational systems, power is the product of the torque τ and angular velocity ω,
where ω measured in radians per second.
In fluid power systems such as hydraulic actuators, power is given by
where p is pressure in pascals, or N/m2 and Q is volumetric flow rate in m3/s in SI units.
Read more about this topic: Power (physics)
Famous quotes containing the words mechanical and/or power:
“No sociologist ... should think himself too good, even in his old age, to make tens of thousands of quite trivial computations in his head and perhaps for months at a time. One cannot with impunity try to transfer this task entirely to mechanical assistants if one wishes to figure something, even though the final result is often small indeed.”
—Max Weber (18641920)
“We are expected to put the utmost energy, of every power that we have, into the service of our fellow men, never sparing ourselves, not condescending to think of what is going to happen to ourselves, but ready, if need be, to go to the utter length of self-sacrifice.”
—Woodrow Wilson (18561924)