Power of Two - Powers of Two Whose Exponents Are Powers of Two

Powers of Two Whose Exponents Are Powers of Two

Because data (specifically integers) and the addresses of data are stored using the same hardware, and the data is stored in one or more octets (23), double exponentials of two are common. For example,

21 = 2
22 = 4
24 = 16
28 = 256
216 = 65,536
232 = 4,294,967,296
264 = 18,446,744,073,709,551,616
2128 = 340,282,366,920,938,463,463,374,607,431,768,211,456
2256 =115,792,089,237,316,195,423,570,985,008,687,907,853,269,984,665,640,564,039,457,584,007,913,129,639,936.
2512 = 13,407,807,929,942,597,099,574,024,998,205,846,127,479,365,820,592,393,377,723,561,443,721,764,030,073,546,976,801,874,298,166,903,427,690,031,858,186,486,050,853,753,882,811,946,569,946,433,649,006,084,096


Several of these numbers represent the number of values representable using common computer data types. For example, a 32-bit word consisting of 4 bytes can represent 232 distinct values, which can either be regarded as mere bit-patterns, or are more commonly interpreted as the unsigned numbers from 0 to 232 − 1, or as the range of signed numbers between −231 and 231 − 1. Also see tetration and lower hyperoperations. For more about representing signed numbers see two's complement.

In a connection with nimbers these numbers are often called Fermat 2-powers.

Read more about this topic:  Power Of Two

Famous quotes containing the word powers:

    However much we may differ in the choice of the measures which should guide the administration of the government, there can be but little doubt in the minds of those who are really friendly to the republican features of our system that one of its most important securities consists in the separation of the legislative and executive powers at the same time that each is acknowledged to be supreme, in the will of the people constitutionally expressed.
    Andrew Jackson (1767–1845)