Power Flow Study - Power Flow Problem Formulation

Power Flow Problem Formulation

The goal of a power flow study is to obtain complete voltage angle and magnitude information for each bus in a power system for specified load and generator real power and voltage conditions. Once this information is known, real and reactive power flow on each branch as well as generator reactive power output can be analytically determined. Due to the nonlinear nature of this problem, numerical methods are employed to obtain a solution that is within an acceptable tolerance.

The solution to the power flow problem begins with identifying the known and unknown variables in the system. The known and unknown variables are dependent on the type of bus. A bus without any generators connected to it is called a Load Bus. With one exception, a bus with at least one generator connected to it is called a Generator Bus. The exception is one arbitrarily-selected bus that has a generator. This bus is referred to as the slack bus.

In the power flow problem, it is assumed that the real power PD and reactive power QD at each Load Bus are known. For this reason, Load Buses are also known as PQ Buses. For Generator Buses, it is assumed that the real power generated PG and the voltage magnitude |V| is known. For the Slack Bus, it is assumed that the voltage magnitude |V| and voltage phase Θ are known. Therefore, for each Load Bus, both the voltage magnitude and angle are unknown and must be solved for; for each Generator Bus, the voltage angle must be solved for; there are no variables that must be solved for the Slack Bus. In a system with N buses and R generators, there are then unknowns.

In order to solve for the unknowns, there must be equations that do not introduce any new unknown variables. The possible equations to use are power balance equations, which can be written for real and reactive power for each bus. The real power balance equation is:

where is the net power injected at bus i, is the real part of the element in the bus admittance matrix YBUS corresponding to the ith row and kth column, is the imaginary part of the element in the YBUS corresponding to the ith row and kth column and is the difference in voltage angle between the ith and kth buses. The reactive power balance equation is:

where is the net reactive power injected at bus i.

Equations included are the real and reactive power balance equations for each Load Bus and the real power balance equation for each Generator Bus. Only the real power balance equation is written for a Generator Bus because the net reactive power injected is not assumed to be known and therefore including the reactive power balance equation would result in an additional unknown variable. For similar reasons, there are no equations written for the Slack Bus.

Read more about this topic:  Power Flow Study

Famous quotes containing the words power, flow, problem and/or formulation:

    Knowledge will forever govern ignorance: And a people who mean to be their own Governors, must arm themselves with the power which knowledge gives.
    James Madison (1751–1836)

    There St. John mingles with my friendly bowl
    The feast of reason and the flow of soul;
    Alexander Pope (1688–1744)

    The government is huge, stupid, greedy and makes nosy, officious and dangerous intrusions into the smallest corners of life—this much we can stand. But the real problem is that government is boring. We could cure or mitigate the other ills Washington visits on us if we could only bring ourselves to pay attention to Washington itself. But we cannot.
    —P.J. (Patrick Jake)

    Art is an experience, not the formulation of a problem.
    Lindsay Anderson (b. 1923)