Polynomial Interpolation - Related Concepts

Related Concepts

Runge's phenomenon shows that for high values of n, the interpolation polynomial may oscillate wildly between the data points. This problem is commonly resolved by the use of spline interpolation. Here, the interpolant is not a polynomial but a spline: a chain of several polynomials of a lower degree.

Interpolation of periodic functions by harmonic functions is accomplished by Fourier transform. This can be seen as a form of polynomial interpolation with harmonic base functions, see trigonometric interpolation and trigonometric polynomial.

Hermite interpolation problems are those where not only the values of the polynomial p at the nodes are given, but also all derivatives up to a given order. This turns out to be equivalent to a system of simultaneous polynomial congruences, and may be solved by means of the Chinese remainder theorem for polynomials. Birkhoff interpolation is a further generalization where only derivatives of some orders are prescribed, not necessarily all orders from 0 to a k.

Collocation methods for the solution of differential and integral equations are based on polynomial interpolation.

The technique of rational function modeling is a generalization that considers ratios of polynomial functions.

At last, multivariate interpolation for higher dimensions.

Read more about this topic:  Polynomial Interpolation

Famous quotes containing the words related and/or concepts:

    Generally there is no consistent evidence of significant differences in school achievement between children of working and nonworking mothers, but differences that do appear are often related to maternal satisfaction with her chosen role, and the quality of substitute care.
    Ruth E. Zambrana, U.S. researcher, M. Hurst, and R.L. Hite. “The Working Mother in Contemporary Perspectives: A Review of Literature,” Pediatrics (December 1979)

    When you have broken the reality into concepts you never can reconstruct it in its wholeness.
    William James (1842–1910)