Polynomial Basis

In mathematics, the polynomial basis is a basis for finite extensions of finite fields.

Let α ∈ GF(pm) be the root of a primitive polynomial of degree m over GF(p). The polynomial basis of GF(pm) is then


\{ 1, \alpha, \ldots, \alpha^{m-1}\}

The set of elements of GF(pm) can then be represented as:


\{ 0, 1, \alpha, \alpha^2, \ldots, \alpha^{p^{m}-2} \}

using Zech's logarithms.

Read more about Polynomial Basis:  Addition, Multiplication, Squaring, Inversion, Usage

Famous quotes containing the word basis:

    Our fathers and grandfathers who poured over the Midwest were self-reliant, rugged, God-fearing people of indomitable courage.... They asked only for freedom of opportunity and equal chance. In these conceptions lies the real basis of American democracy. They and their fathers give a genius to American institutions that distinguished our people from any other in the world.
    Herbert Hoover (1874–1964)