Group Theory
In terms of group theory, if G is the symmetry group of a polyhedral compound, and the group acts transitively on the polyhedra (so that each polyhedron can be sent to any of the others, as in uniform compounds), then if H is the stabilizer of a single chosen polyhedron, the polyhedra can be identified with the orbit space G/H – the coset gH corresponds to which polyhedron g sends the chosen polyhedron to.
Read more about this topic: Polyhedral Compound
Famous quotes containing the words group and/or theory:
“For me, as a beginning novelist, all other living writers form a control group for whom the world is a placebo.”
—Nicholson Baker (b. 1957)
“... liberal intellectuals ... tend to have a classical theory of politics, in which the state has a monopoly of power; hoping that those in positions of authority may prove to be enlightened men, wielding power justly, they are natural, if cautious, allies of the establishment.”
—Susan Sontag (b. 1933)