Orthotropic Materials
For orthotropic materials such as wood, Hooke's law can be expressed in matrix form as
where
- is the Young's modulus along axis
- is the shear modulus in direction on the plane whose normal is in direction
- is the Poisson's ratio that corresponds to a contraction in direction when an extension is applied in direction .
The Poisson's ratio of an orthotropic material is different in each direction (x, y and z). However, the symmetry of the stress and strain tensors implies that not all the six Poisson's ratios in the equation are independent. There are only nine independent material properties; three elastic moduli, three shear moduli, and three Poisson's ratios. The remaining three Poisson's ratios can be obtained from the relations
From the above relations we can see that if then . The larger Poisson's ratio (in this case ) is called the major Poisson's ratio while the smaller one (in this case ) is called the minor Poisson's ratio. We can find similar relations between the other Poisson's ratios.
Read more about this topic: Poisson's Ratio
Famous quotes containing the word materials:
“Young children learn in a different manner from that of older children and adults, yet we can teach them many things if we adapt our materials and mode of instruction to their level of ability. But we miseducate young children when we assume that their learning abilities are comparable to those of older children and that they can be taught with materials and with the same instructional procedures appropriate to school-age children.”
—David Elkind (20th century)