Definition
A planar ternary ring is a structure where is a nonempty set, containing distinct elements called 0 and 1, and satisfies these five axioms:
- ;
- ;
- , there is a unique such that : ;
- , there is a unique, such that ; and
- , the equations have a unique solution .
When is finite, the third and fifth axioms are equivalent in the presence of the fourth. No other pair (0', 1') in can be found such that still satisfies the first two axioms.
Read more about this topic: Planar Ternary Ring
Famous quotes containing the word definition:
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)