Planar Ternary Ring - Definition

Definition

A planar ternary ring is a structure where is a nonempty set, containing distinct elements called 0 and 1, and satisfies these five axioms:

  1. ;
  2. ;
  3. , there is a unique such that : ;
  4. , there is a unique, such that ; and
  5. , the equations have a unique solution .

When is finite, the third and fifth axioms are equivalent in the presence of the fourth. No other pair (0', 1') in can be found such that still satisfies the first two axioms.

Read more about this topic:  Planar Ternary Ring

Famous quotes containing the word definition:

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)