Permutation Polynomial - Finite Fields

Finite Fields

There are many open questions concerning permutation polynomials defined over finite fields (see Lidl & Mullen (1988) and Lidl & Mullen (1993)).

If f(x) is a permutation polynomial defined over the finite field GF(q), where q = pe for some prime p, then so is g(x) = a f(x + b) + c for all a ≠ 0, b and c in GF(q). We say that g(x) is in normalized form if a, b and c are chosen so that g(x) is monic, g(0) = 0 and (provided the characteristic p does not divide the degree n of the polynomial) the coefficient of xn-1 is 0.

The following list, while not exhaustive, contains almost all of the known major classes of permutation polynomials over finite fields.

  • Dickson (1958, pg. 63) lists all normalized permutation polynomials of degree at most 5.
  • xk permutes GF(q) if and only if (k, q - 1) = 1.
  • If a is in GF(q) then the Dickson polynomial gk(x,a) permutes GF(q) if and only if (k, q2 - 1) = 1.
  • If GF(qr) is an extension of GF(q) of degree r, then
with αs in GF(qr) is a linear operator on GF(qr) over GF(q) and it permutes GF(qr) if and only if
  • If r > 1 is relatively prime to q - 1, s divides q - 1 and g(xs) has no nonzero root in GF(q) where g(x) is in the polynomial ring GF(q), then xr(g(xs))(q - 1)/s permutes GF(q).
  • Only a few other specific classes of permutation polynomials over GF(q) have been characterized. Two of these, for example, are:
where m divides q - 1, and
where d divides pn - 1.

Read more about this topic:  Permutation Polynomial

Famous quotes containing the words finite and/or fields:

    Any language is necessarily a finite system applied with different degrees of creativity to an infinite variety of situations, and most of the words and phrases we use are “prefabricated” in the sense that we don’t coin new ones every time we speak.
    David Lodge (b. 1935)

    Earth has not anything to show more fair:
    Dull would he be of soul who could pass by
    A sight so touching in its majesty:
    This city now doth, like a garment, wear
    The beauty of the morning; silent, bare,
    Ships, towers, domes, theatres and temples lie
    Open unto the fields and to the sky;
    All bright and glittering in the smokeless air.
    William Wordsworth (1770–1850)