Explanation
In electromagnetism, the auxiliary magnetic field H represents how a magnetic field B influences the organization of magnetic dipoles in a given medium, including dipole migration and magnetic dipole reorientation. Its relation to permeability is
where the permeability, μ, is a scalar if the medium is isotropic or a second rank tensor for an anisotropic medium.
In general, permeability is not a constant, as it can vary with the position in the medium, the frequency of the field applied, humidity, temperature, and other parameters. In a nonlinear medium, the permeability can depend on the strength of the magnetic field. Permeability as a function of frequency can take on real or complex values. In ferromagnetic materials, the relationship between B and H exhibits both non-linearity and hysteresis: B is not a single-valued function of H, but depends also on the history of the material. For these materials it is sometimes useful to consider the incremental permeability defined as
This definition is useful in local linearizations of non-linear material behavior, for example in a Newton-Raphson iterative solution scheme that computes the changing saturation of a magnetic circuit.
Permeability is the inductance per unit length. In SI units, permeability is measured in henrys per metre (H·m−1 = J/(A2·m) = N A−2). The auxiliary magnetic field H has dimensions current per unit length and is measured in units of amperes per metre (A m−1). The product μH thus has dimensions inductance times current per unit area (H·A/m2). But inductance is magnetic flux per unit current, so the product has dimensions magnetic flux per unit area. This is just the magnetic field B, which is measured in webers (volt-seconds) per square-metre (V·s/m2), or teslas (T).
B is related to the Lorentz force on a moving charge q:
- .
The charge q is given in coulombs (C), the velocity v in meters per second (m/s), so that the force F is in newtons (N):
H is related to the magnetic dipole density. A magnetic dipole is a closed circulation of electric current. The dipole moment has dimensions current times area, units ampere square-metre (A·m2), and magnitude equal to the current around the loop times the area of the loop. The H field at a distance from a dipole has magnitude proportional to the dipole moment divided by distance cubed, which has dimensions current per unit length.
Read more about this topic: Permeability (electromagnetism)
Famous quotes containing the word explanation:
“To develop an empiricist account of science is to depict it as involving a search for truth only about the empirical world, about what is actual and observable.... It must involve throughout a resolute rejection of the demand for an explanation of the regularities in the observable course of nature, by means of truths concerning a reality beyond what is actual and observable, as a demand which plays no role in the scientific enterprise.”
—Bas Van Fraassen (b. 1941)
“The explanation of the propensity of the English people to portrait painting is to be found in their relish for a Fact. Let a man do the grandest things, fight the greatest battles, or be distinguished by the most brilliant personal heroism, yet the English people would prefer his portrait to a painting of the great deed. The likeness they can judge of; his existence is a Fact. But the truth of the picture of his deeds they cannot judge of, for they have no imagination.”
—Benjamin Haydon (17861846)
“How strange a scene is this in which we are such shifting figures, pictures, shadows. The mystery of our existenceI have no faith in any attempted explanation of it. It is all a dark, unfathomed profound.”
—Rutherford Birchard Hayes (18221893)