Perfect Graph

In graph theory, a perfect graph is a graph in which the chromatic number of every induced subgraph equals the size of the largest clique of that subgraph. Perfect graphs are the same as the Berge graphs, graphs that have no odd-length induced cycle or induced complement of an odd cycle.

The perfect graphs include many important families of graphs, and serve to unify results relating colorings and cliques in those families. For instance, in all perfect graphs, the graph coloring problem, maximum clique problem, and maximum independent set problem can all be solved in polynomial time. In addition, several important min-max theorems in combinatorics, such as Dilworth's theorem, can be expressed in terms of the perfection of certain associated graphs.

The theory of perfect graphs developed from a 1958 result of Tibor Gallai that in modern language can be interpreted as stating that the complement of a bipartite graph is perfect; this result can also be viewed as a simple equivalent of König's theorem, a much earlier result relating matchings and vertex covers in bipartite graphs. The first use of the phrase "perfect graph" appears to be in a 1963 paper of Claude Berge, after whom Berge graphs are named. In this paper he unified Gallai's result with several similar results by defining perfect graphs, and he conjectured the equivalence of the perfect graph and Berge graph definitions; Berge's conjecture was later proven as the strong perfect graph theorem.

Read more about Perfect Graph:  Families of Graphs That Are Perfect, Relation To Min-max Theorems, Characterizations and The Perfect Graph Theorems, Algorithms On Perfect Graphs

Famous quotes containing the words perfect and/or graph:

    The complete life, the perfect pattern, includes old age as well as youth and maturity. The beauty of the morning and the radiance of noon are good, but it would be a very silly person who drew the curtains and turned on the light in order to shut out the tranquillity of the evening. Old age has its pleasures, which, though different, are not less than the pleasures of youth.
    W. Somerset Maugham (1874–1965)

    In this Journal, my pen is a delicate needle point, tracing out a graph of temperament so as to show its daily fluctuations: grave and gay, up and down, lamentation and revelry, self-love and self-disgust. You get here all my thoughts and opinions, always irresponsible and often contradictory or mutually exclusive, all my moods and vapours, all the varying reactions to environment of this jelly which is I.
    W.N.P. Barbellion (1889–1919)